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Opinion

Broadening Beyond Carbon: Expanding the Elemental
Scope for Circular Polymer Systems

Polymer materials, such as synthetic rubbers and plas-
tics, are fundamental to modern society due to their diverse
properties and widespread applications. However, increas-
ing reliance on petroleum-derived resources and escalating
waste disposal issues have spurred intensive research into
the degradation and recycling of conventional hydrocar-
bon-based polymers. These efforts have been largely fo-
cused on carbon-based backbones, but achieving a truly
circular economy will require diversifying the scope of el-
ements and chemistries involved in material design.

Among the various elements that could play a role in such
a transition, sulfur is of particular interest because it is pro-
duced in vast quantities as a byproduct of petroleum and
natural-gas refining. Despite its abundance, a significant
portion remains underutilized, representing both an environ-
mental challenge and an untapped opportunity for sustain-
able material innovation that aligns with global initiatives
such as the Sustainable Development Goals (SDGs).

In this article, we highlight recent advances and our own
efforts toward developing sulfur-containing materials
through environmentally harmonized synthetic strategies.
We further discuss how integrating such approaches could
open new pathways for sustainable and reprocessable
polymer systems.

Sulfur as a Surplus Resource

Approximately seven million tons of sulfur are generat-
ed annually as a byproduct of petroleum refining, much of
which remains unused [1]. This large surplus poses envi-
ronmental and storage challenges, but it also represents an
untapped resource for developing sustainable functional
materials. The effective utilization of waste sulfur can foster
a circular economy by creating recyclable and reusable ma-
terials through reversible disulfide chemistry, directly con-
tributing to SDG 12 (Responsible Consumption and Produc-
tion). Moreover, the dissociation of disulfide bonds under
reductive conditions enables the design of degradable poly-
mers, providing a pathway to address the escalating issue of
microplastic pollution (SDG 14 (Life Below Water)).

While sulfur chemistry may not directly address climate
change, it is important that the development of sulfur-based
materials incorporates low-energy, environmentally harmo-
nized synthetic methods to minimize greenhouse gas emis-
sions, aligning with the goals of SDG 13 (Climate Action).

Building on this perspective, the next step is to examine
how sulfur has been incorporated into functional polymer
systems. Recent research efforts have explored various ap-
proaches to design sulfur-containing materials, ranging from
elemental sulfur polymers to complex hybrid systems.

Development of Sulfur-Containing Materials

Efforts to convert surplus sulfur into functional poly-
mers date back several decades [2]. Early attempts to ho-
mopolymerize elemental sulfur (Ss) by heating [3] yielded
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unstable products that readily depolymerized and exhibited
poor solubility, making them unsuitable for practical use. A
major breakthrough came with “inverse vulcanization”,
which stabilizes sulfur by copolymerizing it with organic
comonomers, thereby enabling the preparation of sulfur-
rich polymer networks with enhanced durability [4].

This approach has demonstrated the potential of sulfur-
based polymers in several areas, including energy storage
[5], high-refractive-index optical materials [6], and even
environmental remediation [7]. These examples illustrate
the versatility of sulfur chemistry and its relevance to both
advanced technologies and sustainable innovation.

Despite these advances, challenges remain for practical
and sustainable implementation. Inverse vulcanization typ-
ically requires high reaction temperatures (often above
160°C), leading to significant energy consumption that
conflicts with the principles of environmentally harmo-
nized synthetic methods. Furthermore, the resulting poly-
mers often exhibit poor solubility, limiting their process-
ability and broader application.

To advance sulfur-based materials toward sustainable
social implementation, it is essential to establish alterna-
tive synthetic strategies that operate under mild conditions
and overcome solubility issues. These directions will be
further considered in the following section.

Environmentally Harmonized Synthetic Methods

To overcome the high energy consumption associated with
chain-growth polymerization, recent research has focused on
developing environmentally harmonized step-growth routes
for sulfur-based polymers. A simple aqueous method to pre-
pare linear sulfur (LS) has been reported, offering a promising
energy-efficient pathway for sulfur activation [8,9]. These de-
velopments have opened new opportunities to design sulfur
polymers with longer chain lengths under mild and sustain-
able conditions. In Figure 1, both the LS and conventionally
synthesized polysulfides are illustrated schematically to high-
light the differences in their synthetic routes. In the LS meth-
od, Ss undergoes base-induced ring opening, forming short
sulfur oligomers (typically fewer than eight sulfur atoms)
with anionic terminal species. The chain length depends on
the type and stoichiometry of the base used, whereas in con-
ventionally synthesized polysulfides, radical pathways at ele-
vated temperatures generally yield longer sulfur chains.

The supramolecular integration of LS into polymeric
frameworks has recently been demonstrated through the use
of metal-ligand coordination, enabling the construction of
well-defined sulfur-containing polymers under mild and en-
vironmentally harmonized conditions such as at room tem-
perature and aqueous media [10,11]. These coordination-
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Figure 1 Supramolecular strategies for stabilizing sulfur polymers
from elemental sulfur (Ss). Linear sulfur (LS) forms coordination-
type architectures under mild aqueous conditions via base-induced
ring opening of Ss, whereas threading-type (polyrotaxane) architec-
tures stabilize polysulfide chains synthesized at high temperature
through host—guest inclusion. The terminal structures (anionic for LS
and radical for polysulfides) indicate their formation mechanisms.

driven assemblies provide an effective route to stabilize LS
chains and prevent their thermal degradation, thereby facili-
tating the formation of high-molecular-weight sulfur poly-
mers. The resulting materials exhibit dynamic yet robust ar-
chitectures. In contrast to LS-based systems synthesized
under mild conditions, previous studies employing polysul-
fide chains prepared at elevated temperatures (160°C) have
demonstrated that threading-type (polyrotaxane) architec-
tures can stabilize sulfur chains through host—guest inclusion
[12]. These systems highlight another supramolecular strate-
gy to suppress the decomposition of sulfur-rich polymers
(Figure 1), improving their processability and stability. To-
gether with LS-based coordination systems, such supramo-
lecular designs provide a versatile platform for further func-
tionalization and property tuning, offering new opportunities
for sustainable sulfur polymer development. This architec-
ture also enables structural control and dynamic adaptability
that could be extended toward optically, electronically, or
mechanically responsive systems, representing a design route
beyond conventional disulfide-based networks.

In an emerging and strategic direction, the introduction of
LS units into conventional carbon-based polymers repre-
sents a new approach to enhance existing materials with dy-
namic and reversible properties unique to sulfur. The practi-
cal studies on this concept are currently in progress in our
laboratory and will be reported in due course. Our ongoing
studies have revealed that the incorporation of linear sulfur
units can yield unique mechanical characteristics beyond
those associated with conventional disulfide linkages, high-
lighting an emerging aspect of sulfur polymer chemistry and
suggesting new opportunities for material design.
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Final Opinion

A sustainable and circular society cannot be realized
solely through carbon-based materials. The concept of a
circular economy should encompass not only hydrocar-
bons but also other elements and materials that are abun-
dant yet underutilized. Sulfur, as one of the most surplus
industrial byproducts, provides a unique opportunity to im-
plement this broader elemental strategy.

Our recent approaches to sulfur-based polymer design
demonstrate that surplus sulfur can be transformed into
functional materials with recyclability, reusability, and
high processability under environmentally harmonized
conditions. Beyond these sustainable aspects, sulfur chem-
istry also offers pathways to create high-value functional
polymers, such as optically, electronically, or mechanically
responsive systems, thereby bridging sustainability with
advanced material performance.

Such materials not only contribute to resource circula-
tion but also align with the SDGs, particularly those target-
ing responsible production (SDG 12) and climate action
(SDG 13). Ultimately, expanding material design beyond
carbon-centered systems will diversify the foundations of
polymer science and help establish a truly circular materi-
als economy. Sulfur chemistry, bridging surplus resources
and sustainable functionality, represents one of the most
promising pathways toward this goal.
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