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Opinion

Broadening Beyond Carbon: Expanding the Elemental 
Scope for Circular Polymer Systems

Polymer materials, such as synthetic rubbers and plas-
tics, are fundamental to modern society due to their diverse 
properties and widespread applications. However, increas-
ing reliance on petroleum-derived resources and escalating 
waste disposal issues have spurred intensive research into 
the degradation and recycling of conventional hydrocar-
bon-based polymers. These efforts have been largely fo-
cused on carbon-based backbones, but achieving a truly 
circular economy will require diversifying the scope of el-
ements and chemistries involved in material design.

Among the various elements that could play a role in such 
a transition, sulfur is of particular interest because it is pro-
duced in vast quantities as a byproduct of petroleum and 
natural-gas refining. Despite its abundance, a significant 
portion remains underutilized, representing both an environ-
mental challenge and an untapped opportunity for sustain-
able material innovation that aligns with global initiatives 
such as the Sustainable Development Goals (SDGs).

In this article, we highlight recent advances and our own 
efforts toward developing sulfur-containing materials 
through environmentally harmonized synthetic strategies. 
We further discuss how integrating such approaches could 
open new pathways for sustainable and reprocessable 
polymer systems.

Sulfur as a Surplus Resource
Approximately seven million tons of sulfur are generat-

ed annually as a byproduct of petroleum refining, much of 
which remains unused [1]. This large surplus poses envi-
ronmental and storage challenges, but it also represents an 
untapped resource for developing sustainable functional 
materials. The effective utilization of waste sulfur can foster 
a circular economy by creating recyclable and reusable ma-
terials through reversible disulfide chemistry, directly con-
tributing to SDG 12 (Responsible Consumption and Produc-
tion). Moreover, the dissociation of disulfide bonds under 
reductive conditions enables the design of degradable poly-
mers, providing a pathway to address the escalating issue of 
microplastic pollution (SDG 14 (Life Below Water)).

While sulfur chemistry may not directly address climate 
change, it is important that the development of sulfur-based 
materials incorporates low-energy, environmentally harmo-
nized synthetic methods to minimize greenhouse gas emis-
sions, aligning with the goals of SDG 13 (Climate Action).

Building on this perspective, the next step is to examine 
how sulfur has been incorporated into functional polymer 
systems. Recent research efforts have explored various ap-
proaches to design sulfur-containing materials, ranging from 
elemental sulfur polymers to complex hybrid systems.

Development of Sulfur-Containing Materials 
Efforts to convert surplus sulfur into functional poly-

mers date back several decades [2]. Early attempts to ho-
mopolymerize elemental sulfur (S₈) by heating [3] yielded 
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unstable products that readily depolymerized and exhibited 
poor solubility, making them unsuitable for practical use. A 
major breakthrough came with “inverse vulcanization”, 
which stabilizes sulfur by copolymerizing it with organic 
comonomers, thereby enabling the preparation of sulfur-
rich polymer networks with enhanced durability [4].

This approach has demonstrated the potential of sulfur-
based polymers in several areas, including energy storage 
[5], high-refractive-index optical materials [6], and even 
environmental remediation [7]. These examples illustrate 
the versatility of sulfur chemistry and its relevance to both 
advanced technologies and sustainable innovation.

Despite these advances, challenges remain for practical 
and sustainable implementation. Inverse vulcanization typ-
ically requires high reaction temperatures (often above 
160°C), leading to significant energy consumption that 
conflicts with the principles of environmentally harmo-
nized synthetic methods. Furthermore, the resulting poly-
mers often exhibit poor solubility, limiting their process-
ability and broader application.

To advance sulfur-based materials toward sustainable 
social implementation, it is essential to establish alterna-
tive synthetic strategies that operate under mild conditions 
and overcome solubility issues. These directions will be 
further considered in the following section.

Environmentally Harmonized Synthetic Methods
To overcome the high energy consumption associated with 

chain-growth polymerization, recent research has focused on 
developing environmentally harmonized step-growth routes 
for sulfur-based polymers. A simple aqueous method to pre-
pare linear sulfur (LS) has been reported, offering a promising 
energy-efficient pathway for sulfur activation [8,9]. These de-
velopments have opened new opportunities to design sulfur 
polymers with longer chain lengths under mild and sustain-
able conditions. In Figure 1, both the LS and conventionally 
synthesized polysulfides are illustrated schematically to high-
light the differences in their synthetic routes. In the LS meth-
od, S₈ undergoes base-induced ring opening, forming short 
sulfur oligomers (typically fewer than eight sulfur atoms) 
with anionic terminal species. The chain length depends on 
the type and stoichiometry of the base used, whereas in con-
ventionally synthesized polysulfides, radical pathways at ele-
vated temperatures generally yield longer sulfur chains.

The supramolecular integration of LS into polymeric 
frameworks has recently been demonstrated through the use 
of metal–ligand coordination, enabling the construction of 
well-defined sulfur-containing polymers under mild and en-
vironmentally harmonized conditions such as at room tem-
perature and aqueous media [10,11]. These coordination-

driven assemblies provide an effective route to stabilize LS 
chains and prevent their thermal degradation, thereby facili-
tating the formation of high-molecular-weight sulfur poly-
mers. The resulting materials exhibit dynamic yet robust ar-
chitectures. In contrast to LS-based systems synthesized 
under mild conditions, previous studies employing polysul-
fide chains prepared at elevated temperatures (160°C) have 
demonstrated that threading-type (polyrotaxane) architec-
tures can stabilize sulfur chains through host–guest inclusion 
[12]. These systems highlight another supramolecular strate-
gy to suppress the decomposition of sulfur-rich polymers 
(Figure 1), improving their processability and stability. To-
gether with LS-based coordination systems, such supramo-
lecular designs provide a versatile platform for further func-
tionalization and property tuning, offering new opportunities 
for sustainable sulfur polymer development. This architec-
ture also enables structural control and dynamic adaptability 
that could be extended toward optically, electronically, or 
mechanically responsive systems, representing a design route 
beyond conventional disulfide-based networks.

In an emerging and strategic direction, the introduction of 
LS units into conventional carbon-based polymers repre-
sents a new approach to enhance existing materials with dy-
namic and reversible properties unique to sulfur. The practi-
cal studies on this concept are currently in progress in our 
laboratory and will be reported in due course. Our ongoing 
studies have revealed that the incorporation of linear sulfur 
units can yield unique mechanical characteristics beyond 
those associated with conventional disulfide linkages, high-
lighting an emerging aspect of sulfur polymer chemistry and 
suggesting new opportunities for material design.

Figure 1 Supramolecular strategies for stabilizing sulfur polymers 
from elemental sulfur (S₈). Linear sulfur (LS) forms coordination-
type architectures under mild aqueous conditions via base-induced 
ring opening of S₈, whereas threading-type (polyrotaxane) architec-
tures stabilize polysulfide chains synthesized at high temperature 
through host–guest inclusion. The terminal structures (anionic for LS 
and radical for polysulfides) indicate their formation mechanisms.
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Final Opinion
A sustainable and circular society cannot be realized 

solely through carbon-based materials. The concept of a 
circular economy should encompass not only hydrocar-
bons but also other elements and materials that are abun-
dant yet underutilized. Sulfur, as one of the most surplus 
industrial byproducts, provides a unique opportunity to im-
plement this broader elemental strategy.

Our recent approaches to sulfur-based polymer design 
demonstrate that surplus sulfur can be transformed into 
functional materials with recyclability, reusability, and 
high processability under environmentally harmonized 
conditions. Beyond these sustainable aspects, sulfur chem-
istry also offers pathways to create high-value functional 
polymers, such as optically, electronically, or mechanically 
responsive systems, thereby bridging sustainability with 
advanced material performance.

Such materials not only contribute to resource circula-
tion but also align with the SDGs, particularly those target-
ing responsible production (SDG 12) and climate action 
(SDG 13). Ultimately, expanding material design beyond 
carbon-centered systems will diversify the foundations of 
polymer science and help establish a truly circular materi-
als economy. Sulfur chemistry, bridging surplus resources 
and sustainable functionality, represents one of the most 
promising pathways toward this goal.
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